
Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
1

Introduction to Parallel

Programming (w/ JAVA)

Christian Terboven
IT Center, RWTH Aachen University

terboven@itc.rwth-aachen.de

Dec. 21st, 2015

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
2

Moore‘s Law

 # of transistors / cost-effective integrated

circuit double every N months (12 <= N <= 24)

“Cramming More Components
onto Integrated Circuits”

Gordon Moore, Electronics, 1965
(ftp://download.intel.com/museum/Moores_Law/Articles-
Press_Releases/Gordon_Moore_1965_Article.pdf)

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
3

There is no free lunch anymore

 The number of transistors on a chip is still increasing, but no longer

the clock speed! Instead, we see many cores per chip.

Parallelization has become a
necessity to exploit the

performance potential of
current microprocessors !

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
4

Multi-Core Processor Design

 Rule of thumb: Reduction of 1% voltage and 1% frequency reduces

the power consumption by 3% and the performance by 0.66%.

Core

Cache

Core

Cache

Core

Voltage = 1

Freq = 1

Area = 1

Power = 1

Perf = 1

Voltage = -15%

Freq = -15%

Area = 2

Power = ~1

Perf = ~1.8

(Based on slides from Shekhar Borkar, Intel Corp.)

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
5

Multi-Core Multi-Socket Compute
Node Design

 Set of processors is organized inside

a locality domain with a locally

connected memory.

 The memory of all locality domains is

accessible over a shared virtual address

space.

 Other locality domains are access over

a interconnect, the local domain

can be accessed very efficiently without

resorting to a network of any kind

Core

memory

Core

on-chip
cache

Core Core

memory

inter-
connect

on-chip
cache

on-chip
cache

on-chip
cache

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
6

Multi-Core Multi-Socket Compute
Node Cluster Design

 System where memory is distributed among “nodes”

 No other node than the local one has direct access to the local memory

CPU 1

Cache

CPU 2

Cache

CPU 3

Cache

CPU 4

Cache

CPU N

Cache…

MEM MEM

NET IF

MEM

NET IF

MEM

NET IF

MEM

NET IF

NETWORK

Node

Socket

Network interface

NET IF

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
7

What is High Performance Computing
(HPC)?

 From Wikipedia:

“A supercomputer is a computer at the frontline of current

processing capacity, particularly

speed of calculation.”

 Historically there were two

principles of science: Theory and Experiment. Computational

Science extends them as a third

Simulation, Optimization

Virtual Reality

Theory
Models, Differential

Equations, linear equation

systems

Experiments
Observation and

prototypes

empirical studies/sciences

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
8

 I hope you are motivated by now 

 Basic Concepts of Threading

 Matrix Multiplication: from Serial to Multi-Core

 Amdahl‘s Law and Efficiency

 Matrix Multiplication Reviewed

 Basic GPGPU Concepts

 Matrix Multiplication: from Serial to Many-Core

 Summary

 Christmas Exercise

Agenda

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
9

Basic Concepts of Threading

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
10

Processes vs. Threads

 Applications have to create a team of

threads to run on multiple cores

simultaneously

 Threads share the global (shared) data

of the program, typically the data on

the heap

 Every thread has its own stack, which

may contain private data only visible

to the thread

 Operating systems and/or programming

languages offer facilities to creat and

manage threads in the application

Code segment

Data segment

thread

main()

…thread thread

Stack Stack

Stack

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
11

Shared Memory Parallelization

 Memory can be accessed by several threads running on different

cores in a multi-socket multi-core system:

Look for tasks that can be executed
simultaneously (task parallelism)

a=4

CPU1 CPU2

a

c=3+a
Decompose data into distinct

chunks to be processed
independently (data parallelism)

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
12

Parallel Programming in Theory and
Practice

 Parallelism has to be exploited by the programmer…

Theory Practice

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
13

Example of parallel work

 Example: 4 cars are produced in parallel Prof. Dr. G. Wellein, Dr. G. Hager,
Uni Erlangen-Nürnberg

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
14

Limits of scalability

 Parts of the manufacturing process can not be parallelized

 Example: Delivery of components (all workers have to wait)

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
15

Limits of scalability (cont.)

 Individual steps may take more or less time

 Load imbalances lead to unused resources

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
16

How are you doing?

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
17

Matrix Multiplication: from

Serial to Multi-Core

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
18

Illustration of Matrix Multiplication

 Simple thing: C = A times B, with naive implementation in O(n^3)

 results in the following computations

 Independent computations exploitable for parallelization:

 rows of the matrix C

source:
Wikipedia

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
19

Illustration of Matrix Multiplication (cont.)

 Class Matrix.java:
final public class Matrix {

private final int M; // number of rows and columns

private final double[][] data; // M-by-M array

// create M-by-N matrix of 0's

public Matrix(int dim) {

this.M = dim;

data = new double[M][M];

}

[...]

} // end of class Matrix

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
20

Illustration of Matrix Multiplication (cont.)

 Class Matrix.java, Matrix Multiplication implementation:
// return C = A * B

public Matrix times(Matrix B) {

Matrix A = this;

if (A.M != B.M) throw

new RuntimeException("Illegal matrix dimensions.");

Matrix C = new Matrix(A.M);

for (int i = 0; i < M; i++)

for (int j = 0; j < M; j++)

for (int k = 0; k < M; k++)

C.data[i][j] +=

(A.data[i][k] * B.data[k][j]);

return C;

}

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
21

Illustration of Matrix Multiplication (cont.)

 Class Matrix.java, Matrix Multiplication implementation:
// return C = A * B

public Matrix times(Matrix B) {

Matrix A = this;

if (A.M != B.M) throw

new RuntimeException("Illegal matrix dimensions.");

Matrix C = new Matrix(A.M);

for (int i = 0; i < M; i++)

for (int j = 0; j < M; j++)

for (int k = 0; k < M; k++)

C.data[i][j] +=

(A.data[i][k] * B.data[k][j]);

return C;

}

Independent for every i:
parallelize this loop over the threads

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
22

Thread-level Parallelization

1. Determine the number of threads

to be used

 by querying the number of cores,

 or by user input

2. Compute iteration chunks for every

individual thread

 Rows per Chunk = M / number-of-threads

3. Create a team of threads and start the threads

 Java class Thread encapsulates all thread mgmt. tasks

 Provide suitable function: matrix multiplication on given chunk

 Start thread via start() method

4. Wait for all threads to complete their chunk

 For each thread call join() method

Initial Thread Serial Part

Parallel
RegionSlave

ThreadsSlave
ThreadsWorker
Threads

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
23

Thread-level Parallelization (cont)

 Class Matrix.java, threaded Matrix Multiplication implementation:
[...]

Thread threads[] = new Thread[num_threads];

// start num_threads threads with their individual tasks

for (int i = 0; i < num_threads; i++) {

// compute chunk

int rowsPerChunk = M / num_threads;

int sRow = i * rowsPerChunk; int eRow = [...];

// initialize task, create thread, start thread

MultiplicationAsExecutor task = new MultiplicationAsExecutor

(sRow, eRow, C.data, A.data, B.data, M);

threads[i] = new Thread(task);

threads[i].start();

}

// wait for all threads to finish

for (int i = 0; i < num_threads; i++) {

threads[i].join();

}

[...]

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
24

Thread-level Parallelization (cont)

 Class MultiplicationAsExecutor.java:
public class MultiplicationAsExecutor implements Runnable {

[...]

// initialization by storing local chunk

public MultiplicationAsExecutor(int sRow, int eRow, double[][] dC,

double[][] dA, double[][] dB, int dim) {

this.startRow = sRow; this.endRow = eRow;

this.c = dC; this.a = dA; this.b = dB; this.dim = dim;

}

// perform the actual computation

public void run() {

for (int i = startRow; i < endRow; i++)

for (int j = 0; j < dim; j++)

for (int k = 0; k < dim; k++)

c[i][j] += (a[i][k] * b[k][j]);

}

// execute immediately

public void execute(Runnable r) {

r.run();

}

}

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
25

20,079 19,951

10,138

7,034

5,44
4,19

0

5

10

15

20

25

2D, serial 2D, threaded:
1

2D, threaded:
2

2D, threaded:
3

2D, threaded:
4

2D, threaded:
8

R
u

n
ti

m
e

[s
ec

.]
Performance Evaluation

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
26

Amdahl‘s Law and Efficiency

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
27

Parallelization Overhead

 Overhead introduced by the parallelization:

 Time to start / end / manage threads

 Time to send / exchange data

 Time spent in synchronization of threads / processes

 With parallelization:

 The total CPU time increases,

 The Wall time decreases,

 The System time stays the same.

 Efficient parallelization is about minimizing the overhead introduced

by the parallelization itself!

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
28

Speedup and Efficiency

 Time using 1 CPU: T(1)

 Time using p CPUs:T(p)

 Speedup S: S(p)=T(1)/T(p)

 Measures how much faster the parallel computation is!

 Efficiency E: E(p)=S(p)/p

 Ideal case: T(p)=T(1)/p  S(p)=p E(p)=1.0

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
29

Amdahl‘s Law Illustrated

 If 80% (measured in program runtime) of your work can be

parallelized and „just“ 20% are still running sequential, then your

speedup will be:

1 processor:
time: 100%
speedup: 1

2 processors:
time: 60%
speedup: 1.7

4 processors:
time: 40%
speedup: 2.5

 processors:
time: 20%
speedup: 5

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
30

Matrix Multiplication Reviewed

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
31

Performance Considerations

 The Issue: 2D arrays in JAVA

result in bad performance

 Better: 1D array with index fct.

 Caches only work well for consecutive

memoy accesses!

 CPU is fast

 Caches:

 Fast, but expensive, thus small [MBs]

 Memory is slow

 Slow, but cheap, thus large [GBs]

core

memory

off-chip cache

on-chip cache

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
32

20,079

14,79 14,822

7,606

5,274
4,331

3,579

0

5

10

15

20

25

2D, serial 1D, serial 1D,
threaded: 1

1D,
threaded: 2

1D,
threaded: 3

1D,
threaded: 4

1D,
threaded: 8

R
u

n
ti

m
e

[s
ec

.]
Performance Evaluation

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
33

Basic GPGPU Concepts

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
34

Comparison CPU  GPU

 Similar # of transistors but different design Similar # of transistors but different design

CPU GPU

 Optimized for low-latency access to

cached data sets

 Control logic for out-of-order and

speculative execution

 Optimized for data-parallel,

throughput computation

 Architecture tolerant of memory

latency

 More transistors dedicated to

computation

© NVIDIA Corporation 2010

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
35

GPGPU architecture: NVIDIA‘s Fermi

 3 billion transistors

 448 Cores/ Streaming Processors (SP)

 E.g. floating point and integer unit

 14 Streaming Multiprocessors (SM, MP)

 32 cores per MP

 Memory hierarchy

 Processing flow

 Copy data from host to device

 Execute kernel

 Copy data from device to host

©
 N

V
ID

IA
 C

o
rp

o
ra

ti
o

n
 2

0
1

0

GPU

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
36

Comparison CPU  GPU

 Weak memory model

 Host + device memory = separate entities

 No coherence between host + device

Data transfers needed

 Host-directed execution model

 Copy input data from CPU mem. to device mem.

 Execute the device program

 Copy results from device mem. to CPU mem.

PCI Bus

CPU

MEMORY

GPU

MEMORY

1

2

3

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
37

Programming model

 Definitions

 Host: CPU, executes functions

 Device: usually GPU, executes kernels

 Parallel portion of application executed

on device as kernel

 Kernel is executed as array of threads

 All threads execute the same code

 Threads are identified by IDs

Select input/output data

Control decisions

float x = input[threadID];
float y = func(x);
output[threadID] = y; ©

 N
V

ID
IA

 C
o

rp
o

ra
ti

o
n

 2
0

1
0

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
38

Programming model (cont.)

 Threads are grouped into blocks, Blocks are grouped into a grid.

 Kernel is executed as a grid of blocks of threads

 Dimensions of blocks

and grids: ≤ 3

Host

Kernel 1

Kernel 2

Device

Block
0

Block
1

Block
2

Block
3

Block
4

Block
5

Block
6

Block
7

Block
(0,0)

Block
(0,1)

Block
(0,2)

Block
(0,3)

Block
(1,0)

Block
(1,1)

Block
(1,2)

Block
(1,3)

Block (1,3)

Thread
(0,0,0)

Thread
(0,0,0)

Thread
(0,1,0)

Thread
(0,0,0)

Thread
(0,0,0)

Thread
(0,0,0)

Thread
(1,1,0)

Thread
(1,0,0)

Thread
(0,0,0)

Thread
(0,0,0)

Thread
(2,1,0)

Thread
(2,0,0)

Ti
m

e

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
39

Putting it all together

Core

device: GPU

PCIe

streaming multiprocessor (SM)

thread / vector

block of threads / gang

grid (kernel)

Device

…

Host

SM-1

Shared

Mem

Registers

L1

L2

Global Memory

CPU CPU Mem

Host Host Memory

SM-n

Shared

Mem

Registers

L1

logical hierarchyexecution model memory model

Vector, worker, gang mapping is compiler dependent.

registers

instruction cache

hardware/ software cache

sync

possible,

shared

mem

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
40

Matrix Multiplication: from

Multi- to Many-Core

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
41

GPGPU Parallelization

1. Create a CUDA-kernel well-suited for the GPGPU device

 simple-enough and data-parallel code

2. Setup JCuda and Compile your program accordingly

 kernel code has to be compiled to .ptx file with NVIDIA‘s compiler

3. Initialize JCuda environment

 load driver library, initialize device

4. Transfer data from host to device

 all data necessary on the device

5. Execute CUDA-kernel

 launch kernel on device

6. Transfer results from device to host

 all data necessary after the kernel execution on the host

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
42

GPGPU Parallelization (cont.)

 CUDA-kernel:

 C is often close enough to JAVA 

extern "C"

__global__ void matmult(int dim, double *c, double *a, double *b)

{

int row = blockDim.y * blockIdx.y + threadIdx.y;

int col = blockDim.x * blockIdx.x + threadIdx.x;

if (row > dim || col > dim) return;

double prod = 0;

int kk;

for (kk = 0; kk < dim; ++kk){

prod += a[row * dim + kk] * b[kk * dim + col];

}

c[row*dim + col] = prod;

}

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
43

GPGPU Parallelization (cont.)

 Class Matrix.java, CUDA Matrix Multiplication implementation:
[...]

// allocate memory

int size = A.M * A.M * Sizeof.DOUBLE;

CUdeviceptr a_dev = new CUdeviceptr();

CUdeviceptr b_dev = new CUdeviceptr();

CUdeviceptr c_dev = new CUdeviceptr();

cudaMalloc(a_dev, size); cudaMalloc(b_dev, size);

cudaMalloc(c_dev, size);

// load code

CUmodule module = new CUmodule();

cuModuleLoad(module, "JCudaMatmulKernel.ptx");

CUfunction function = new CUfunction();

cuModuleGetFunction(function, module, "matmult");

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
44

GPGPU Parallelization (cont.)

 Class Matrix.java, CUDA Matrix Multiplication implementation:
// copy data

cuMemcpyHtoD(a_dev, Pointer.to(A.data), size);

cuMemcpyHtoD(b_dev, Pointer.to(B.data), size);

// launch kernel

Pointer parameters = Pointer.to(

Pointer.to(new int[] { A.M }), Pointer.to(c_dev),

Pointer.to(a_dev), Pointer.to(b_dev));

final int threadsPerDim = 32;

int grids = (int) Math.ceil(((double) A.M) / threadsPerDim);

cuLaunchKernel(function, grids, grids, 1,

threadsPerDim, threadsPerDim, 1, 0, null,

parameters, null);

cuCtxSynchronize();

[...] // cleanup code omissed for brevity

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
45

14,79 14,822

3,579

1,373
0,185

0

5

10

15

20

25

1D, serial 1D, threaded: 1 1D, threaded: 8 1D, cuda 1D, cuda (no
copy)

R
u

n
ti

m
e

[s
ec

.]
Performance Evaluation

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
46

Performance: Critical Discussion

 FLOPS: performance rate (no. floating-point operations per second)

 Matrix Multiplication Algorithm: n^2 + 2n complexity, here n = 1536

 Result: 7247757.3 mega double precision floating-point operations performed

 Host: Intel Xeon E5620

 4 Cores, with Hyper-Threading

 2.4 GHz clock frequency

 SSE4.2: 4 floating-ypoint operations per cycle peak

 4 * 2.4 * 4 = 38.4 GFLOPs peak performance

 Our multi-threaded code run at 2025 MFLOPS

5.3 % efficiency

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
47

Performance: Critical Discussion (cont.)

 GPU: NVIDIA Tesla C2050

 448 CUDA cores

 1.15 GHz clock frequency

 448 * 1.15 = 515 GFLOPS peak performance

 Our CUDA kernel runs at 5278 MFLOPS

10.1 % efficiency

 Note on the GPU: the data transfer is the most costly part

 Kernel execution time incl. data transfer: 1.373 sec.

 Kernel execution time excl. data transfer: 0.185 sec.

 The GPU would profit from

 a larger problem size, or

 repeated executions of the kernel

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
48

Performance: Critical Discussion (cont.)

 Can we do better with the same algorithm? Yes!

 Matrix Multiplication can profit from blocking, that is the reuse of data in the

caches, for both the CPU and the GPU. And: Matrix Multiplication is a

standard problem, there are libraries for that: BLAS (dgemm).

 GPGPU Performance with cuBLAS

 Kernel execution time incl. data transfer: 1.306 sec.

 Kernel execution time excl. data transfer: 0.0234 sec.

=> The CUDA kernel itself runs at 310 GFLOPS

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
49

1,373

0,185

1,305

2,34E-002

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1D, cuda 1D, cuda (no copy) 1D, cuBLAS 1D, cuBLAS (no copy)

R
u

n
ti

m
e

[s
ec

.]
Performance Evaluation

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
50

Summary

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
51

Summary

 What did we learn?

 Parallelization has become a necessity to exploit the performance potential of

modern multi- and many-core architectures!

 Efficient programming is about optimizing memory access, efficient

parallelization is about minimizing overhead.

 Shared Memory parallelization: work is distributed over threads on separate

cores, threads share global data

 Heterogeneous architectures (here: GPGPUs): separate memories require

explicit data management, well-suited problems can benefit from special

architectures with large amount of parallelism.

 Not covered today: Cache Blocking to achieve even better perf.

 Not covered today: Distributed Memory parallelization

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
52

Lectures

 SS 2016

 Lecture: Performance & correctness analysis of parallel programs

 Software Lab: Parallel Programming Models for Applications in the Area of

High-Performance Computation (HPC)

 Seminar: Current Topics in High-Performance Computing (HPC)

 WS 2016/17

 Lecture: Introduction to High-Performance Computing

 Seminar: Current Topics in High-Performance Computing (HPC)

www.hpc.rwth-aachen.de

contact@hpc.rwth-aachen.de

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
53

Christmas Exercise

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
54

Game of Life

 Game of Life: zero-player game 

 Evolution is determined by initial state and game rules

 Rules:

 2D orthogonal grid of cells

 every cell has only two possible states: alive (black) or dead (white)

 every cell interacts with its neighbours, and at each time step:

any live cell with fewer than two live neighbours dies,

any live cell with two or three live neighbours lives on,

any live cell with more than three live neighbours dies,

any dead cell with exactly three live neighbours becomes a live cell.

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
55

There is something to win!

 A really nice book on HPC from really nice people:

 One book for each in the group with

 the highest performance in a multi-

threaded solution

 the highest performance in a CUDA-

parallel solution

 random drawing winner

 Requirement: fill out and hand in the

questionnaire

 Measurements will be done by us on

linuxc8 (RWTH Compute Cluster)

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
56

Umfrage zur Produktivität beim
Entwickeln im Bereich HPC

 Allgemeine Umfrage (einmalig gültig bis 20.1.2016)

Hilft unseren Forschungsaktivitäten!

 Am Ende der Weihnachtsaufgabe ausfüllen &

auf Weihnachtsaufgabe beziehen!

Einflussfaktoren auf Programmieraufwand?

Benötigter Programmieraufwand?

Anzahl der programmierten Code-Zeilen?

Erreichte Performance?

 Zum leichten und qualitativen Ausfüllen der

Umfrage bitte während des Entwickelns obige

Daten schon festhalten

https://app.lamapoll.de/
ProductivityHPCStudents/

Bitte nehmen Sie teil!

Introduction to Parallel Programming (w/ JAVA)

Christian Terboven | IT Center der RWTH Aachen University
57

Questions?

